Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing

Mirae Kim, Jae Hwan Jeong, Jong Young Lee, Andrea Capasso, Francesco Bonaccorso, Seok Hyeon Kang, Young Kook Lee, Gwan Hyoung Lee

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)


The advent of 3D printing has had a disruptive impact in manufacturing and can potentially revolutionize industrial fields. Thermoplastic materials printable into complex structures are widely employed for 3D printing. Polylactic acid (PLA) is among the most promising polymers used for 3D printing, owing to its low cost, biodegradability, and nontoxicity. However, PLA is electrically insulating and mechanically weak; this limits its use in a variety of 3D printing applications. This study demonstrates a straightforward and environment-friendly method to fabricate conductive and mechanically reinforced PLA composites by incorporating graphene nanoplatelets (GNPs). To fully utilize the superior electrical and mechanical properties of graphene, liquid-exfoliated GNPs are dispersed in isopropyl alcohol without the addition of any surfactant and combined with PLA dissolved in chloroform. The GNP-PLA composites exhibit improved mechanical properties (improvement in tensile strength by 44% and maximum strain by 57%) even at a low GNP threshold concentration of 2 wt %. The GNP-PLA composites also exhibit an electrical conductivity of over 1 mS/cm at >1.2 wt %. The GNP-PLA composites can be 3D-printed into various features with electrical conductivity and mechanical flexibility. This work presents a new direction toward advanced 3D printing technology by providing higher flexibility in designing multifunctional 3D printed features.

Original languageEnglish
Pages (from-to)11841-11848
Number of pages8
JournalACS Applied Materials and Interfaces
Issue number12
Publication statusPublished - 2019 Mar 27

Bibliographical note

Publisher Copyright:
© 2019 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • General Materials Science


Dive into the research topics of 'Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing'. Together they form a unique fingerprint.

Cite this