Abstract
We report an ZnO-RuO2/RGO ternary nanocomposite synthesized via a hydrothermal method combined with a homogeneous precipitation method. Morphological and elemental analysis demonstrates that ZnO nanosheets were anchored on the graphene nanosheets surrounded by RuO2 nanoparticles. The ZnO-RGO/RuO2 nanocomposites possessed the extended light absorption range and show remarkably enhanced photocatalytic activity toward methylene blue (MB) under the simulated sunlight irradiation as compared to bare-ZnO and the optimum binary ZnO-RGO and ZnO-RuO2 nanocomposites. We have observed complete degradation of MB in 180, 150, 90, and 60 min for ZnO, ZnO-RuO2, ZnO-RGO, and ZnO-RGO/RuO2 nanocomposites respectively. The enhanced photocatalytic performance in ZnO-RGO/RuO2 is ascribed to increased light absorption and efficient charge separation of the photogenerated carriers and that it prolonged the lifetime of the electron-hole pairs due to the chemical bonding between ZnO, RuO2 and graphene nanosheets. In addition to the excellent photocatalytic degradation properties, the synthesized samples also exhibited a strong yellow emission, which implies that these nanocomposites may find application as yellow components in near UV-white LEDs. These attractive features make the ZnO-RuO2/RGO nanocomposite a promising recoverable photocatalyst for practical use in wastewater treatment and fabrication of near UV-white LEDs.
Original language | English |
---|---|
Pages (from-to) | 6999-7009 |
Number of pages | 11 |
Journal | Ceramics International |
Volume | 41 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2015 Jun 1 |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Ltd and Techna Group S.r.l.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry