Abstract
Recently, deep learning-based lossy image compression methods have been proposed. However, their efficiency in terms of storage and computational costs has not been addressed adequately. In this paper, we propose efficient lossy image compression methods based on asymmetric autoencoder and decoder pruning. Experimental results demonstrate the effectiveness of our methods.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2063-2067 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
Publication status | Published - 2020 May |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: 2020 May 4 → 2020 May 8 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 20/5/4 → 20/5/8 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering