Effects of unsteady wakes on heat transfer of blade tip and shroud

Minho Bang, Seok Min Choi, Ho Seong Sohn, Jun Su Park, Hyung Hee Cho

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

An experimental study has been conducted to investigate the heat-transfer characteristics of blade tips and shrouds with and without unsteady wakes. Depending on the presence of unsteady wakes, the local heat/mass-transfer coefficients of the tip and shroud were measured using the naphthalene sublimation method. Wakes from unsteady blades were modeled as wakes generated from moving cylindrical rod bundles. Test conditions were set to a Reynolds number of 100,000, based on an inlet velocity of 11.4 m/s and the axial chord length. The Strouhal number was varied from 0 to 0.22. For the case without unsteady wakes (St = 0), high heat/mass-transfer coefficients appeared in regions where various flow patterns, such as flow reattachment, swirling flow, and vortices, occurred. Unsteady wakes (St = 0.22) made high turbulence intensity of the tip leakage flow, and flow patterns ranging from flow reattachment to tip leakage vortex in the tip and shroud were changed and dispersed in the presence of unsteady wakes, thus changing the heat/mass-transfer distributions in these areas. Due to the high thermal load on the tip and shroud under unsteady wake conditions, more detailed cooling designs must be considered, ranging from film cooling holes to the installation of additional structures on the blade tip, especially in the leading edge region and mid-region I of the tip, and the mid-region I and trailing edge region of the shroud.

Original languageEnglish
Pages (from-to)125-135
Number of pages11
JournalInternational Communications in Heat and Mass Transfer
Volume97
DOIs
Publication statusPublished - 2018 Oct

Bibliographical note

Publisher Copyright:
© 2018

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Chemical Engineering(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Effects of unsteady wakes on heat transfer of blade tip and shroud'. Together they form a unique fingerprint.

Cite this