Effects of Ti interlayers on microstructures and hydrogen storage capacity in Mg/Pd multilayer thin films

Hwaebong Jung, Junhan Yuh, Sungmee Cho, Wooyoung Lee

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

In this work, we examine the microstructural and hydrogen storage properties of 60 multilayer Mg/Pd and Ti/Mg/Ti/Pd films using an ultra-high-vacuum (UHV) DC magnetron sputtering system. The hydrogen absorption capacity of the Ti/Mg/Ti/Pd film was found to be 1.7, 3.5, and 4.7 wt% at 50, 100, and 150 C, respectively, while that of the Mg/Pd film was measured at significantly lower values, 0.18, 0.65, and 1.35 wt%. The hydrogen absorption capacity for the Mg/Pd and Ti/Mg/Ti/Pd films is greatly dependent upon the formation of Mg-Pd intermetallic phases, formed during the hydrogenation process. Our results demonstrate that Ti interlayers in the Ti/Mg/Ti/Pd film play a crucial role in preventing the formation of Mg-Pd intermetallic phases, which originate from the inter-diffusion of Mg and Pd atoms during hydrogenation, and thus result in an improved hydrogen storage capacity.

Original languageEnglish
Pages (from-to)63-66
Number of pages4
JournalJournal of Alloys and Compounds
Volume601
DOIs
Publication statusPublished - 2014 Jul 15

Bibliographical note

Funding Information:
This work was supported by the POSCO Research Project (2013Z048,), Priority Research Centers Program (2009-0093823), and the Pioneer Research Center Program (2013008070) through the National Research Foundation of Korea (NRF).

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effects of Ti interlayers on microstructures and hydrogen storage capacity in Mg/Pd multilayer thin films'. Together they form a unique fingerprint.

Cite this