Abstract
Highly ordered mesoporous bimodal structures of KIT-6 with average pore diameters of 3.6 and 5.4 nm originated from its different wall thickness were newly synthesized and applied for CO hydrogenation to hydrocarbons through Fischer-Tropsch Synthesis (FTS) reaction using the supported iron nanoparticles. The ordered bimodal mesopore structures of the KIT-6 with smaller than 5.4 nm in size showed a significantly enhanced FTS activity by selectively forming heterogeneous bimodal crystallite size distributions of iron nanoparticles. The positive effects of the mesoporous bimodal structures of the KIT-6 were mainly attributed to the facile formation of the spatially confined smaller iron nanoparticles, which can be strongly interacted with the structurally stable ordered mesoporous KIT-6 with the co-presence of the larger iron nanoparticles on the outer surfaces of the mesoporous bimodal KIT-6. After adding small amount of potassium promoter with 2 wt%K on the mesoporous bimodal Fe/KIT-6, a slight increase of CO conversion as well as C5+ selectivity with less extent of CO2 formation was observed due to the suppressed activity of water-gas shift reaction. However, the structurally unstable monomodal KIT-6 having a relatively larger mesopore above 7.3 nm showed a lower FTS activity by preferentially forming an inactive amorphous carbon species. A superior FTS activity on the ordered mesoporous bimodal Fe/KIT-6 was attributed to the easy formations of smaller iron carbides, where the active smaller iron carbides were strongly interacted and spatially confined inside of the highly ordered mesoporous bimodal KIT-6 surfaces.
Original language | English |
---|---|
Pages (from-to) | 197-207 |
Number of pages | 11 |
Journal | Chemical Engineering Journal |
Volume | 354 |
DOIs | |
Publication status | Published - 2018 Dec 15 |
Bibliographical note
Funding Information:The authors would like to sincerely acknowledge the financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF- 2018M3D3A1A01018009 and 2017R1D1A1B03028214 ).
Publisher Copyright:
© 2018 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering