Effects of natural-resource-based scavengers on the adhesion properties and formaldehyde emission of engineered flooring

Jong Sung Kim, Young Geun Eom, Sumin Kim, Hyun Joong Kim

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


In this study we investigated the effects of using four additives, wheat flour (WF), tannin, rice husk (RH) and charcoal, to melamine-formaldehyde (MF) resin for decorative veneer and base plywood in engineered flooring in order to reduce the formaldehyde emission levels and improve the adhesion properties. We determined the effects of variations in hot-press time, temperature and pressure on the bonding strength and formaldehyde emission. Blends of various MF resin/additive compositions were prepared. To determine and compare the effects of the additives, seven MF resin blends were prepared with the four different additives: four with a wt ratio of 8:2 (MF/WF, MF/tannin, MF/RH and MF/charcoal), and three in the wt ratio of 8:1:1 (MF/WF/tannin, MF/WF/RH and MF/WF/charcoal). The desiccator and perforator methods were used to determine the level of formaldehyde emission. The formaldehyde emission level decreased with all additives, except for RH. At a charcoal addition of only 20%, the formaldehyde emission level was reduced to nearly 0.1 mg/l. Curing of the high WF and tannin content in this adhesive system was well processed, as indicated by the increased lap-shear strength. In the case of WF, the lap shear strength was much lower due to the already high temperature of 130°C. The adhesive layer was broken when exposed to high temperature for extended time. In addition, both WF and tannin showed good mechanical properties. With increasing WF or tannin content, the initial adhesion strength increased. The MF resin samples with 20% added tannin or WF showed both good lap shear and initial adhesion strengths compared to the pure MF resin.

Original languageEnglish
Pages (from-to)211-225
Number of pages15
JournalJournal of Adhesion Science and Technology
Issue number3-4
Publication statusPublished - 2007

Bibliographical note

Funding Information:
This work was supported in part by the Research Program of Kookmin University in Korea. This work was financially supported by the Seoul R&BD Program. Sumin Kim is grateful for the graduate fellowship provided by the Ministry of Education through the Brain Korea 21 project.

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Mechanics of Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Effects of natural-resource-based scavengers on the adhesion properties and formaldehyde emission of engineered flooring'. Together they form a unique fingerprint.

Cite this