Abstract
In this study, the aerodynamic characteristics of tall buildings with corner modifications (e.g., local wind force coefficients, mean pressure distributions, normalized power spectrum density, and extreme local pressure) were examined. Wind tunnel experiments were conducted to measure the wind pressures on building models with different heights and recessed corners of different ratios. At a wind direction of a = 0° (i.e., wind blowing on the front of a building), corner modifications effectively reduced wind forces in all cases. Specifically, small corner modification ratios reduced wind forces more effectively than their larger counterparts. However, corner modifications resulted in extreme local pressure on building surfaces. In addition, for small corner modification ratios, the probability of extreme local pressure occurring at a = 0° was high. This probability was also high for large corner modification ratios at a = 15° (i.e., wind blowing slightly obliquely on the front of a building) because wind blowing obliquely creates substantial vortex shedding on one side surface and extreme negative pressure over one building side surface. Results of computational fluid dynamic modeling were adopted to determine details of the aerodynamic characteristics of tall buildings with corner modifications.
Original language | English |
---|---|
Pages (from-to) | 1109-1126 |
Number of pages | 18 |
Journal | Building Simulation |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 Aug |
Bibliographical note
Funding Information:This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT
Publisher Copyright:
© 2020, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature.
All Science Journal Classification (ASJC) codes
- Building and Construction
- Energy (miscellaneous)