TY - JOUR
T1 - Effects of B doping on hydrogen desorption from Si(001) during gas-source molecular-beam epitaxy from Si2H6 and B2H6
AU - Kim, H.
AU - Glass, G.
AU - Park, S. Y.
AU - Spila, T.
AU - Taylor, N.
AU - Abelson, J. R.
AU - Greene, J. E.
PY - 1996/12/16
Y1 - 1996/12/16
N2 - Boron doping concentrations ≳6×1019 cm-3 were found to increase Si(001) growth rates RSi at low temperatures while decreasing RSi at higher temperatures during gas-source molecular beam epitaxy (GS-MBE) from Si2H6 and B2H6. In order to probe the mechanisms governing these effects, Si(001) samples with B coverages θB ranging from <0.05 to ≃0.5 ML were prepared by exposing clean Si(001)2×1 wafers to B2H6 doses between 2×1017 and 4×1020 cm-20 at 200-400°C. The samples were then heated to 700°C to desorb the hydrogen, cooled to 200°C, and exposed to atomic deuterium until saturation coverage. D2 temperature programmed desorption spectra exhibit β2 and β1 peaks due to dideuteride and monodeuteride desorption at 405 and 515°C as well as new B-induced peaks, β*2 and β*1, at 330 and 470°C. Increasing θB increases the area under β*2 and β*1 at the expense of β2 and β1. Moreover, the total D coverage continuously decreases from ≃1.23 ML in the absence of B to ≃0.74 ML al θB=0.5 ML. We propose that the observed B-induced decrease in the Si*-D bond strength, where Si* represents surface Si atoms bonded to second-layer B atoms, is due to charge transfer and increased Si* dimer strain. The Si* to B charge transfer also deactivates Si surface dangling bonds causing the decrease in θD. These results are used to explain the GS-MBE growth kinetics.
AB - Boron doping concentrations ≳6×1019 cm-3 were found to increase Si(001) growth rates RSi at low temperatures while decreasing RSi at higher temperatures during gas-source molecular beam epitaxy (GS-MBE) from Si2H6 and B2H6. In order to probe the mechanisms governing these effects, Si(001) samples with B coverages θB ranging from <0.05 to ≃0.5 ML were prepared by exposing clean Si(001)2×1 wafers to B2H6 doses between 2×1017 and 4×1020 cm-20 at 200-400°C. The samples were then heated to 700°C to desorb the hydrogen, cooled to 200°C, and exposed to atomic deuterium until saturation coverage. D2 temperature programmed desorption spectra exhibit β2 and β1 peaks due to dideuteride and monodeuteride desorption at 405 and 515°C as well as new B-induced peaks, β*2 and β*1, at 330 and 470°C. Increasing θB increases the area under β*2 and β*1 at the expense of β2 and β1. Moreover, the total D coverage continuously decreases from ≃1.23 ML in the absence of B to ≃0.74 ML al θB=0.5 ML. We propose that the observed B-induced decrease in the Si*-D bond strength, where Si* represents surface Si atoms bonded to second-layer B atoms, is due to charge transfer and increased Si* dimer strain. The Si* to B charge transfer also deactivates Si surface dangling bonds causing the decrease in θD. These results are used to explain the GS-MBE growth kinetics.
UR - http://www.scopus.com/inward/record.url?scp=0001188149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001188149&partnerID=8YFLogxK
U2 - 10.1063/1.117132
DO - 10.1063/1.117132
M3 - Article
AN - SCOPUS:0001188149
SN - 0003-6951
VL - 69
SP - 3869
EP - 3871
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 25
ER -