Effects of an unsteady wake on heat transfer of endwall surface in the linear cascade

Jun Su Park, Eui Yeop Jung, Dong Hyun Lee, Kyung Min Kim, Beom Soo Kim, Byoung Moon Chang, Hyung Hee Cho

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The present study aimed to investigate the effect of an unsteady wake on the heat transfer for the endwall surface of a linear turbine blade cascade. A naphthalene sublimation method was implemented to obtain the detailed heat/mass transfer distributions on the endwall surface. Tests were conducted on a five-passage linear cascade in a low-speed wind tunnel. The effects of unsteady wakes were simulated in the facility by a wake generator consisting of circular rods that were traversed across the inlet flow. The test conditions were fixed at a Reynolds number of 70,000 based on the inlet velocity and chord length. The flow coefficients were varied from 1.3 to 4.2. and range of Strouhal number was 0.1 to 0.3. The results showed that the heat transfer distributions differed between steady and unsteady test cases. The overall heat transfer for the unsteady test cases was higher, and the heat transfer was enhanced with increasing the Strouhal number due to the resulting thin boundary layer and high turbulence intensity. Therefore, a cooling system for the endwall of a rotor should focus on decreasing the high temperatures of the endwall surface induced by the unsteady wakes.

Original languageEnglish
Title of host publicationASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
DOIs
Publication statusPublished - 2013
EventASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology - Minneapolis, MN, United States
Duration: 2013 Jul 142013 Jul 19

Publication series

NameASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
Volume3

Other

OtherASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CityMinneapolis, MN
Period13/7/1413/7/19

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Effects of an unsteady wake on heat transfer of endwall surface in the linear cascade'. Together they form a unique fingerprint.

Cite this