Abstract
Ag-doped and un-doped Sb-rich GeSb thin films were deposited by DC magnetron co-sputtering. The electrical, structural, and optical properties of the thin films phase change were investigated using 4-point probe measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), and a static tester. With increasing Ag doping content, the crystallization temperature and sheet resistance of crystalline state decreased from 325 °C to 283 °C and from 187.33 Ω/□ to 114.62 Ω/□, respectively. XRD patterns of the films showed a Sb hexagonal structure, and the calculated grain size increased from 13.9 nm to 17 nm as the Ag concentration increased. Grain sizes of the Ag-doped thin films were larger than the grain sizes of un-doped thin films, as determined by TEM images. A static tester verified the decreased crystallization speed and optical contrast. Un-doped GeSb crystallization took 160 ns and 16 at.% Ag-doped GeSb crystallization took 200 ns when the laser power was 13 mW. Based on a power-time-effect diagram, the 12.6 at.% Ag-doped GeSb showed good thermal stability in a crystalline state.
Original language | English |
---|---|
Pages (from-to) | 5323-5328 |
Number of pages | 6 |
Journal | Thin Solid Films |
Volume | 519 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2011 Jun 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry