Effects of acclimation and pH on ammonia inhibition for mesophilic methanogenic microflora

Jong Hun Park, Jeong Jun Yoon, Gopalakrishnan Kumar, Yong Su Jin, Sang Hyoun Kim

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

This work evaluated the toxicity of ammonia toward mesophilic methanogenic microflora, with respect to the acclimation and pH. Microflora acclimated to total ammonia nitrogen (TAN) concentrations of 1.0–2.5 g N/L and neutral to alkaline pH, 7.5–8.0, were used for anaerobic toxicity assays (ATA) with TAN up to 6.1 and pH ranged from 7 to 8.2. The effect of ammonia on the specific methanogenic activity (SMA) and methane yield (MY) was described using a noncompetitive model. Acclimation increased the tolerance of the methanogenic microflora to ammonia over the acclimation range. There was no significant difference in the values of SMA and MY at each TAN concentration in the examined pH range, although free ammonia nitrogen (FAN) concentrations increased along with pH. It implied that TAN rather than FAN would be the useful criterion for ammonia inhibition. Propionate degradation was more inhibited compared to acetoclastic methanogenesis by ammonia. The half-maximal inhibitory concentrations (IC50) of TAN for the SMA from acetate, SMA from propionate, MY from acetate, and MY from propionate were 3.42–4.26, 3.14–3.91, 3.67–4.07, and 3.34–3.88 g N/L, respectively, at pH 7.4. 454-pyrosequencing analysis of the inoculum showed that the archaeal community was dominant of Methanosarcinaceae and Methanobacteriaceae, which were known as tolerant to ammonia inhibition.

Original languageEnglish
Pages (from-to)218-223
Number of pages6
JournalWaste Management
Volume80
DOIs
Publication statusPublished - 2018 Oct

Bibliographical note

Funding Information:
This work was financially supported by the Korea Institute of Industrial Technology (KITECH), the Republic of Korea (No. JC170043).

Publisher Copyright:
© 2018

All Science Journal Classification (ASJC) codes

  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Effects of acclimation and pH on ammonia inhibition for mesophilic methanogenic microflora'. Together they form a unique fingerprint.

Cite this