Effect of Sn on thermal conductivity of Mg-5Zn based alloys

H. Kang, J. Y. Suh, S. W. Kang, D. H. Bae

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

For the enhancement of high temperature performance of the Mg-Zn based alloys, Sn element has been alloyed. However, the effect of Sn on the thermal conductivity of the Mg-Zn based alloys has been barely studied. In this study, pure Mg and Mg-5Zn alloys are alloyed with a 1, 3, and 5 mass% of Sn, respectively, and the heat capacity, thermal diffusivity and thermal conductivity of the alloys are then evaluated in a temperature range of 298 to 573 K. In the Mg-Sn binary alloys, the heat capacity and thermal diffusivity gradually decrease with increasing the volume fraction of the Mg2Sn phase. In the Mg-Zn-Sn based alloys (ZT alloy), since the adding Sn element is mostly located at the MgZn2 phases, thermal diffusivity is not affected with an increment of Sn content. Furthermore, the thermal conductivity of the ZT55 alloy at elevated temperatures is slightly higher than that of the ZT53 alloys.

Original languageEnglish
Pages (from-to)1144-1146
Number of pages3
JournalMaterials Transactions
Volume56
Issue number7
DOIs
Publication statusPublished - 2015

Bibliographical note

Publisher Copyright:
© 2015 The Japan Institute of Metals and Materials.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effect of Sn on thermal conductivity of Mg-5Zn based alloys'. Together they form a unique fingerprint.

Cite this