Effect of rotation on heat transfer of a concave surface with array impingement jet

Eui Yeop Jung, Chan Ung Park, Dong Hyun Lee, Jun Su Park, Sehjin Park, Hyung Hee Cho

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Turbine blades are directly exposed to hot oncoming combustion gases, so their leading edges require effective cooling techniques. Here, we investigated the heat transfer characteristics in a concave duct with an array of impingement jets, including the effect of rotation. The concave duct was used to simulate the inner surface of the leading edge of a blade. The inner surface was cooled by the impingement array jet method. The jet Reynolds number (Re) based on the jet nozzle diameter was fixed at 3,000, and the ratio of the height to target surface (H/d) was set to 2.0. The injection holes (d = 5 mm) were positioned in a staggered pattern, and the rotation number was about 0.032. We focused on the effects of rotating position orientations. We investigated front, leading, and trailing orientations. Naphthalene sublimation method was used to determine the local heat/mass transfer distributions, and the flow pattern was obtained by numerical simulation. Crossflow in the jet arrays was generated by the spent air from the impingement jet. The crossflow changes the flow characteristics at the stagnation point along the streamwise direction on a concave surface. Rotation of the duct increased the flow mixing compared with the stationary case. The jet flow was deflected because of the Coriolis force in the leading and trailing orientations. However, in the front orientation, the heat transfer characteristics showed deflection in the clockwise direction in the developing flow away from the stagnation point. Overall, the averaged heat transfer values were enhanced in the rotating cases. The trailing orientation case showed the highest averaged heat transfer among all tested cases.

Original languageEnglish
Title of host publicationASME Turbo Expo 2013
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2013
DOIs
Publication statusPublished - 2013
EventASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013 - San Antonio, Tx, United States
Duration: 2013 Jun 32013 Jun 7

Publication series

NameProceedings of the ASME Turbo Expo
Volume3

Other

OtherASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013
Country/TerritoryUnited States
CitySan Antonio, Tx
Period13/6/313/6/7

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Effect of rotation on heat transfer of a concave surface with array impingement jet'. Together they form a unique fingerprint.

Cite this