Effect of reactor thickness on gas-solid flow and heat transfer of thin rectangular fluidized bed reactors for CO2 capture

Seungyeong Choi, Minho Bang, Kiwoong Kim, Yong Ki Park, Hyung Hee Cho

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Thermal design of dual circulating fluidized bed reactors for carbon dioxide (CO2) capture was carried out. To handle large heat duties for regeneration, a thin rectangular reactor was proposed. For feasible thermal design, the effect of varying reactor thickness on the gas-solid flow and heat transfer of the thin rectangular fluidized bed was investigated. Reactor thickness of 10, 30, and 60 mm was tested. Numerical simulations were conducted to analyze the pressure difference, solid particle hold-up distribution, particle velocity, granular temperature, and heat transfer in detail. According to our results, when the reactor is between 10 mm and 30 mm thick, a large solid hold-up occurs adjacent to the narrow wall. This causes a large pressure difference due to the wall effect. Furthermore, the particle velocities were analyzed to evaluate that there is the two-dimensional(2D) particle mixing behaviors. On the other hand, in the case of reactors with a thickness of 60 mm, tuning flows occur adjacent to the narrow wall. This reduced the pressure difference and the three-dimensional(3D) particle mixing behaviors. This difference in particle behavior affected heat transfer. In the case of reactor thicknesses between 10 mm and 30 mm, the heat transfer increased with the reactor thickness. In particular, the heat transfer at the narrow wall of the reactor with a thickness of 10 mm was extremely low due to the low particle mixing. On the other hand, there was more heat transfer with a thickness at the 60 mm wall, despite the low solid hold-up.

Original languageEnglish
Title of host publicationFluid Applications and Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859049
DOIs
Publication statusPublished - 2019
EventASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019 - San Francisco, United States
Duration: 2019 Jul 282019 Aug 1

Publication series

NameASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Volume3A-2019

Conference

ConferenceASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Country/TerritoryUnited States
CitySan Francisco
Period19/7/2819/8/1

Bibliographical note

Funding Information:
This work was supported by the Korea CCS R&D Center (Korea CCS 2020 Project) grant funded by the Korea government Ministry of Science, ICT & Future Planning) in 2017 (KCRC-2014M1A8A1049330). This work also was supported by the Human Resources Development program (No. 20174030201720) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy.

Publisher Copyright:
Copyright © 2019 ASME.

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Effect of reactor thickness on gas-solid flow and heat transfer of thin rectangular fluidized bed reactors for CO2 capture'. Together they form a unique fingerprint.

Cite this