Effect of nanobubbles on powder morphology in the spray drying process

Sang Hyun Oh, Sung Il Kim, Younghwan Joo, Hyung Hee Cho

Research output: Contribution to journalArticlepeer-review

Abstract

This study investigated the influence of gas-injected nanobubbles on the morphology of particles during spray drying under various experimental conditions. The nanoparticle tracking system was used to measure the generation, size, and concentration of nanobubbles. Experiments were conducted at different temperatures (160°C–260°C) and feed rates (0.2–0.26 g/s) to examine the effect of nanobubbles on spray drying and present diverse results. The deionized (DI) water with generated nanobubbles had a particle concentration of 1.8 × 108 particles/mL and a mean particle size of 242.6 nm, which was ∼3.31 × 107 particles/mL higher untreated DI water. The maltodextrin solution containing nanobubbles also showed a significant increase in particle generation, with a concentration of 1.62 × 109 particles/mL. The viscosity of the maltodextrin solution containing nanobubbles decreased by ∼18%, from 9.3 mPa·s to 7.5 mPa·s. Overall, the size of the generated particles was similar regardless of nanobubble treatment, but there was a tendency for particle size to increase under specific temperature (260°C) and feed flow rate (0.32 g/s) conditions. Furthermore, it was observed that the Hausner ratio significantly varied with increasing temperature and feed flow rate, and these results were explained through scanning electron microscopy images. These findings confirm that the gas nanobubbles mixed in the feed can exert diverse effects on the spray drying system and powder characteristics depending on the operating conditions. This study suggests that nanobubbles can contribute to a more efficient process in spray drying and can influence the morphological characteristics of particles depending on the spray drying conditions.

Original languageEnglish
Pages (from-to)759-773
Number of pages15
JournalJournal of Dairy Science
Volume107
Issue number2
DOIs
Publication statusPublished - 2024 Feb

Bibliographical note

Publisher Copyright:
© 2024 American Dairy Science Association

All Science Journal Classification (ASJC) codes

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint

Dive into the research topics of 'Effect of nanobubbles on powder morphology in the spray drying process'. Together they form a unique fingerprint.

Cite this