Effect of gold nanoparticle morphology on thermal properties of polyimide nanocomposite films

Hyungjoon Jeon, Kangtaek Lee

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

We have investigated effect of filler particle morphology on the thermal properties of polyimide (PI) nanocomposite films. Gold nanoparticles with various morphologies (non-aggregated, aggregated, and nanorod) were selected as model fillers. To prevent nanoparticle agglomeration in a solvent (1-methyl-2-pyrrolidinone), the surfaces of the gold nanoparticles were modified with triphenylphosphine-3,3',3”-trisulfonic acid trisodium salt (TPPTS), creating the surface sulfonic acid groups. Experiments showed that the thermal diffusivity of the films increased with a large aspect ratio (i.e., nanorod) or aggregation. The addition of gold nanoparticles could reduce the coefficient of thermal expansion (CTE) of PI films in all cases, and the CTE was lowest when the particle size was smallest (i.e., non-aggregated nanoparticles). By considering the effects of the thermal conductivity of the nanocomposite and the interfacial area between the nanoparticles and polymer matrix, we found that increasing the interfacial area between the nanoparticles and polymer matrix by controlling the nanoparticle morphology could reduce the CTE of the nanocomposite more effectively than increasing the thermal diffusivity of the nanocomposite.

Original languageEnglish
Article number123651
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Volume579
DOIs
Publication statusPublished - 2019 Oct 20

Bibliographical note

Publisher Copyright:
© 2019 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Effect of gold nanoparticle morphology on thermal properties of polyimide nanocomposite films'. Together they form a unique fingerprint.

Cite this