TY - JOUR
T1 - Effect of composition and pretreatment parameters on activity and stability of Cu-Al catalysts for water-gas shift reaction
AU - Mane, Rasika B.
AU - Jeong, Dae Woon
AU - Malawadkar, Atul V.
AU - Roh, Hyun Seog
AU - Rode, Chandrashekhar V.
PY - 2014/6
Y1 - 2014/6
N2 - We investigated various Cu species responsible for highly efficient Cu-Al oxide catalyst for the water-gas shift reaction (WGSR). The formation of various Cu species was achieved by systematically varying the Cu-Al composition in the coprecipitated mixed Cu-Al oxides. The Cu-Al composition of 70:30 (Cu-Al-7) was the best for WGSR using the reformate gas composition. In addition, the Cu-Al-7 catalyst reduced under 100 % H2, was relatively stable with time on stream of 100 h, at higher gas hourly space velocity of 36 201 h -1.The structural investigation of our coprecipitated catalysts with varying Cu-Al compositions revealed the formation of nonzero oxidation state copper and metallic Cu to be essential for the observed WGSR activity. In addition, the highest activity and stability of Cu-Al-7 catalysts reduced under 100 % H2 at lower temperature was attributed to particle-size stabilization and a lower extent of Cu aggregation by Cu2O and boehmite phases, respectively, along with the formation of various Cu species during the activation protocol for 12 h. Complete CO2 selectivity without methanation was observed for all the Cu-Al compositions irrespective of their pretreatment conditions. Teamwork brings success: The coexistence of various nonzero oxidation state and metallic copper species in a Cu-Al catalyst with 70 atom % Cu yields the highest CO conversion with a stable time on stream (TOS) of 100 h in the water-gas shift reaction (WGSR). PEM=proton-exchange membrane.
AB - We investigated various Cu species responsible for highly efficient Cu-Al oxide catalyst for the water-gas shift reaction (WGSR). The formation of various Cu species was achieved by systematically varying the Cu-Al composition in the coprecipitated mixed Cu-Al oxides. The Cu-Al composition of 70:30 (Cu-Al-7) was the best for WGSR using the reformate gas composition. In addition, the Cu-Al-7 catalyst reduced under 100 % H2, was relatively stable with time on stream of 100 h, at higher gas hourly space velocity of 36 201 h -1.The structural investigation of our coprecipitated catalysts with varying Cu-Al compositions revealed the formation of nonzero oxidation state copper and metallic Cu to be essential for the observed WGSR activity. In addition, the highest activity and stability of Cu-Al-7 catalysts reduced under 100 % H2 at lower temperature was attributed to particle-size stabilization and a lower extent of Cu aggregation by Cu2O and boehmite phases, respectively, along with the formation of various Cu species during the activation protocol for 12 h. Complete CO2 selectivity without methanation was observed for all the Cu-Al compositions irrespective of their pretreatment conditions. Teamwork brings success: The coexistence of various nonzero oxidation state and metallic copper species in a Cu-Al catalyst with 70 atom % Cu yields the highest CO conversion with a stable time on stream (TOS) of 100 h in the water-gas shift reaction (WGSR). PEM=proton-exchange membrane.
UR - http://www.scopus.com/inward/record.url?scp=84902136521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902136521&partnerID=8YFLogxK
U2 - 10.1002/cctc.201301049
DO - 10.1002/cctc.201301049
M3 - Article
AN - SCOPUS:84902136521
SN - 1867-3880
VL - 6
SP - 1698
EP - 1706
JO - ChemCatChem
JF - ChemCatChem
IS - 6
ER -