TY - GEN
T1 - Effect of array jet on cooling effectiveness on full-coverage film cooled surface
AU - Lee, Dong Hyun
AU - Oh, Sang Hyun
AU - Jung, Eui Yeop
AU - Kim, Kyung Min
AU - Cho, Hyung Hee
PY - 2009
Y1 - 2009
N2 - In this study, the cooling effectiveness (φ) was measured on full-coverage film cooled surface with and without array jet impingement cooing using an infra-red thermographic technique. Measurements were conducted with two test plates of different thermal conductivities. One was made of stainless steel (k=16.3 W/m·K) and the other was made of polycarbonate (k=0.2 W/m·K). The measured cooling effectiveness comprises the adiabatic film cooling effectiveness on the film cooled surfaces, the heat conduction through the test plates and convective heat transfer of array jet impingement underneath the test plates. The inclination angles of film cooling holes and impingement jet holes were 35° and 90°, respectively. The diameters of both film cooling and impingement jet cooling holes were 5 mm. The streamwise and spanwise hole spacing-to-hole diameter ratios (p/d) are 3 for both the effusion plate (film cooled plate) and the injection plate (impingement nozzle plate. The holes on each plate were arranged in an inline pattern, while the film cooling holes and jet holes were positioned in a staggered manner. The jet Reynolds number based on the hole diameter was 3,000 and the equivalent blowing ratio (M) was 0.3. The gap distance between the jet plate and the film cooling plate was varied from 1 to 5 times of the hole diameter. In addition, the cooling effectiveness without impingement was tested, too. The stainless steel plate shows relatively higher and uniform cooling effectiveness than the polycarbonate plate. The effect of H/d was not significant for both test plates. However, the cooling effectiveness without the impingement jets decreases significantly for the stainless steel plate, while it changed a little for the cooling effectiveness of the polycarbonate plate.
AB - In this study, the cooling effectiveness (φ) was measured on full-coverage film cooled surface with and without array jet impingement cooing using an infra-red thermographic technique. Measurements were conducted with two test plates of different thermal conductivities. One was made of stainless steel (k=16.3 W/m·K) and the other was made of polycarbonate (k=0.2 W/m·K). The measured cooling effectiveness comprises the adiabatic film cooling effectiveness on the film cooled surfaces, the heat conduction through the test plates and convective heat transfer of array jet impingement underneath the test plates. The inclination angles of film cooling holes and impingement jet holes were 35° and 90°, respectively. The diameters of both film cooling and impingement jet cooling holes were 5 mm. The streamwise and spanwise hole spacing-to-hole diameter ratios (p/d) are 3 for both the effusion plate (film cooled plate) and the injection plate (impingement nozzle plate. The holes on each plate were arranged in an inline pattern, while the film cooling holes and jet holes were positioned in a staggered manner. The jet Reynolds number based on the hole diameter was 3,000 and the equivalent blowing ratio (M) was 0.3. The gap distance between the jet plate and the film cooling plate was varied from 1 to 5 times of the hole diameter. In addition, the cooling effectiveness without impingement was tested, too. The stainless steel plate shows relatively higher and uniform cooling effectiveness than the polycarbonate plate. The effect of H/d was not significant for both test plates. However, the cooling effectiveness without the impingement jets decreases significantly for the stainless steel plate, while it changed a little for the cooling effectiveness of the polycarbonate plate.
UR - http://www.scopus.com/inward/record.url?scp=77953011262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953011262&partnerID=8YFLogxK
U2 - 10.1115/HT2009-88420
DO - 10.1115/HT2009-88420
M3 - Conference contribution
AN - SCOPUS:77953011262
SN - 9780791843574
T3 - Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009
SP - 565
EP - 572
BT - Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009
T2 - 2009 ASME Summer Heat Transfer Conference, HT2009
Y2 - 19 July 2009 through 23 July 2009
ER -