Effect of a SFCL on commutation failure in a HVDC system

Hee Jin Lee, Gum Tae Son, Jae Ik Yoo, Jung Wook Park

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)


This paper describes an analysis of the effects of a superconducting fault current limiter (SFCL) on commutation failure in a high-voltage direct current (HVDC) system. Most commutation failures are caused by voltage disturbances at the inverter side and cannot be avoided in HVDC systems using thyristors. When ac voltage is recovered to a normal condition, the commutation failure can be removed. However, persistence of the commutation failure can lead to suspension of the converter station. The commutation process is affected by the margin of the extinction angle, commutating reactance, and fault current level. The SFCL can limit the fault current on the ac side of the converter and thus quickly restore the HVDC system to normal status. A detailed simulation based on modeling of an actual system is carried out to verify that the SFCL can reduce commutation failure in a HVDC system.

Original languageEnglish
Article number6363555
JournalIEEE Transactions on Applied Superconductivity
Issue number3
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Effect of a SFCL on commutation failure in a HVDC system'. Together they form a unique fingerprint.

Cite this