Abstract
Most edge-aware smoothing methods are based on the Euclidean distance to measure the similarity between adjacent pixels. This paper exploits the properties of the commute time to extend the notion of 'similarity' in this context. The intuition is that since the commute time reflects the effect of all possible weighted paths between nodes (pixels), it can account for the global distribution of image features. The commute time is characterized by eigenvectors of a large Laplacian matrix, which is very costly even with sophisticated eigen-solver. To this end, we further employ a multiscale algorithm for approximating the eigenvector computation efficiently. It is analogous to the classical Nystrom's method for low rank matrix approximation. However, we do not depend on long-range connections between nodes, allowing one to include spatial coordinates in defining feature space. Extensive experimental validation demonstrates the benefits of using the commute time in a range of image processing applications, such as edge-aware image smoothing, texture filtering, and local edit propagation.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings |
Publisher | IEEE Computer Society |
Pages | 3304-3308 |
Number of pages | 5 |
ISBN (Electronic) | 9781467399616 |
DOIs | |
Publication status | Published - 2016 Aug 3 |
Event | 23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, United States Duration: 2016 Sept 25 → 2016 Sept 28 |
Publication series
Name | Proceedings - International Conference on Image Processing, ICIP |
---|---|
Volume | 2016-August |
ISSN (Print) | 1522-4880 |
Other
Other | 23rd IEEE International Conference on Image Processing, ICIP 2016 |
---|---|
Country/Territory | United States |
City | Phoenix |
Period | 16/9/25 → 16/9/28 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition
- Signal Processing