Abstract
The thermal performance of hybrid hollow plaster panels (HHPPs) was analyzed using the amount of phase change material (PCM) injection as a variable according to the size of the hollow area. This study focuses on n-octadecane, an organic PCM that is used for storing latent heat during the phase change range and to improve thermal transmittance using exfoliated graphite nanoplatelets (xGnPs), which have a high thermal conductivity. When xGnP is applied to n-octadecane, the thermal conductivity improves by 225%, and it is confirmed that the thermal storage or release of the phase change material is an active reaction. The thermo-physical properties of the xGnP and n-octadecane composites were analyzed using a thermal conductivity analyzer (TCi) and differential scanning calorimetry (DSC). The thermal stability of PCM was analyzed over a long duration of 10,000 thermal cycles. The thermal performance of the PCM/plaster composite panel using the dynamic heat transfer device was determined. The peak temperature through the HHPP significantly reduced by 3.8 ℃ in an internal room, and the time-lag effect was confirmed to be 1.56 h. The results indicate that up to 36.6 J/m2 of thermal energy was stored in the 26-Px/O, corresponding to approximately 247% of the available thermal energy of the reference panel.
Original language | English |
---|---|
Pages (from-to) | 428-436 |
Number of pages | 9 |
Journal | Journal of Hazardous Materials |
Volume | 374 |
DOIs | |
Publication status | Published - 2019 Jul 15 |
Bibliographical note
Funding Information:This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20194010201850 ).
Publisher Copyright:
© 2019 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Environmental Engineering
- Environmental Chemistry
- Waste Management and Disposal
- Pollution
- Health, Toxicology and Mutagenesis