Dual-cation electrolytes crosslinked with mxene for high-performance electrochromic devices

Soyoung Bae, Youngno Kim, Jeong Min Kim, Jung Hyun Kim

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous-OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2 /C.

Original languageEnglish
Article number874
JournalNanomaterials
Volume11
Issue number4
DOIs
Publication statusPublished - 2021 Apr

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Dual-cation electrolytes crosslinked with mxene for high-performance electrochromic devices'. Together they form a unique fingerprint.

Cite this