Abstract
Reduction of Fe-bearing FINEX process waste and carbon composite pellets from 1 373 K to 1 573 K to produce DRI (direct reduced iron) for use in the blast furnace was investigated using a modified thermogravimetric analyzer. Reduction from the initial Fe2O3 was not uniform throughout the composite pellet. Oxygen removal from the Fe2O3 rich composite pellets over 84% was only observed at 1 573 K. Lower temperatures resulted in significantly un-reduced FeOt due to the premature consumption of the carbon. A peripheral boundary of FeOt·Al2O3 and 2FeO·SiO2 phases surrounding the reducible FeOt was observed in some of the partially reduced cross-sectional SEM (scanning electron microscope) images that could hinder reduction. From the apparent activation energy, interfacial reaction seems to affect the kinetics of the Fe-bearing process waste composite pellets. Bursting of pre-dried composite pellets containing less than 2 mass% moisture was simulated in a RHF hearth simulator. From direct observation of pellets charged between 1 173 K to 1 573 K, medium-sized pellets between 9.4 to 12.4 mm diameter showed less bursting of the pellet, when charged below 1 273 K. In addition, modification of the physical strength of the hard bedrock formed from pellet bursting could be softened with additions of SiO2.
Original language | English |
---|---|
Pages (from-to) | 1157-1164 |
Number of pages | 8 |
Journal | ISIJ International |
Volume | 55 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2015 |
Bibliographical note
Publisher Copyright:© 2015 ISIJ.
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry