Abstract
As a synthetic model for intra-protein interactions that reinforce binding affinities between proteins and ligands, the energetic interplay of binding and folding was investigated using foldamer-based receptors capable of adopting helical structures. The receptors were designed to have identical hydrogen-bonding sites for anion binding but different aryl appendages that simply provide additional π-stacking within the helical backbones without direct interactions with the bound anions. In particular, the presence of electron-deficient aryl appendages led to dramatic enhancements in the association constant between the receptor and chloride or nitrate ions, by up to three orders of magnitude. Extended stacking within the receptor contributes to the stabilization of the entire folding structure of complexes, thereby enhancing binding affinities.
Original language | English |
---|---|
Pages (from-to) | 10441-10445 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 59 |
Issue number | 26 |
DOIs | |
Publication status | Published - 2020 Jun 22 |
Bibliographical note
Publisher Copyright:© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)