TY - GEN
T1 - Downlink capacity and base station density in cellular networks
AU - Yu, Seung Min
AU - Kim, Seong Lyun
PY - 2013
Y1 - 2013
N2 - There have been a bulk of analytic results about the performance of cellular networks where base stations are regularly located on a hexagonal or square lattice. This regular model cannot reflect the reality, and tends to overestimate the network performance. Moreover, tractable analysis can be performed only for a fixed location user (e.g., cell center or edge user). In this paper, we use the stochastic geometry approach, where base stations can be modeled as a homogeneous Poisson point process. We also consider the user density, and derive the user outage probability that an arbitrary user is under outage owing to low signal-to-interference-plus-noise ratio or high congestion by multiple users. Using the result, we calculate the density of success transmissions in the downlink cellular network. An interesting observation is that the success transmission density increases with the base station density, but the increasing rate diminishes. This means that the number of base stations installed should be more than n-times to increase the network capacity by a factor of n. Our results will provide a framework for performance analysis of the wireless infrastructure with a high density of access points, which will significantly reduce the burden of network-level simulations.
AB - There have been a bulk of analytic results about the performance of cellular networks where base stations are regularly located on a hexagonal or square lattice. This regular model cannot reflect the reality, and tends to overestimate the network performance. Moreover, tractable analysis can be performed only for a fixed location user (e.g., cell center or edge user). In this paper, we use the stochastic geometry approach, where base stations can be modeled as a homogeneous Poisson point process. We also consider the user density, and derive the user outage probability that an arbitrary user is under outage owing to low signal-to-interference-plus-noise ratio or high congestion by multiple users. Using the result, we calculate the density of success transmissions in the downlink cellular network. An interesting observation is that the success transmission density increases with the base station density, but the increasing rate diminishes. This means that the number of base stations installed should be more than n-times to increase the network capacity by a factor of n. Our results will provide a framework for performance analysis of the wireless infrastructure with a high density of access points, which will significantly reduce the burden of network-level simulations.
UR - http://www.scopus.com/inward/record.url?scp=84883197855&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883197855&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84883197855
SN - 9783901882548
T3 - 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, WiOpt 2013
SP - 119
EP - 124
BT - 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, WiOpt 2013
T2 - 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, WiOpt 2013
Y2 - 13 May 2013 through 17 May 2013
ER -