Document vectorization method using network information of words

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


We propose a new method for vectorizing a document using the relational characteristics of the words in the document. For the relational characteristics, we use two types of relational information of a word: 1) the centrality measures of the word and 2) the number of times that the word is used with other words in the document. We propose these methods mainly because information regarding the relations of a word to other words in the document are likely to better represent the unique characteristics of the document than the frequency-based methods (e.g., term frequency and term frequency–inverse document frequency). In experiments using a corpus consisting of 14 documents pertaining to four different topics, the results of clustering analysis using cosine similarities between vectors of relational information for words were comparable to (and more accurate than in some cases) those obtained using vectors of frequency-based methods. The clustering analysis using vectors of tie weights between words yielded the most accurate result. Although the results obtained for the small dataset used in this study can hardly be generalized, they suggest that at least in some cases, vectorization of a document using the relational characteristics of the words can provide more accurate results than the frequency-based vectors.

Original languageEnglish
Article numbere0219389
JournalPloS one
Issue number7
Publication statusPublished - 2019 Jun 1

Bibliographical note

Funding Information:
S.Y.L. received funding from Yonsei University, grant number 2018-22-0078. www. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Publisher Copyright:
© 2019 Sang Yup Lee. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Document vectorization method using network information of words'. Together they form a unique fingerprint.

Cite this