DNA-directed amphiphilic self-assembly as a chemifunctional/multiscale-structuring strategy for high-performance Li-S batteries

Seok Kyu Cho, Sung Ju Cho, Seong Sun Lee, Keun Ho Choi, Sang Young Lee

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Deoxyribonucleic acid (DNA)-based self-assembly has garnered considerable attention as a high-fidelity 'bottom-up' fabrication technique. Herein, intrigued by the amphiphilic nature of DNA molecules, we demonstrate a new class of DNA-directed amphiphilic self-assembly as a chemifunctional/multiscale-structuring strategy, beyond the previously reported DNA-mediated assemblies, and explore its potential application to lithium-sulfur (Li-S) batteries as a proof-of-concept. DNA-directed amphiphilic self-assembly enables the formation of various structures with a wide range of dimensional scales and exceptionally low bundle/junction electrical resistance, which are difficult to achieve with conventional DNA-mediated assemblies. The amphiphilic DNA molecules interact with single-walled carbon nanotubes (SWCNTs) through hydrophobic π-π stacking and divalent metal ions via electrostatic interaction. This results in electrically conductive DNA/SWCNT foams with hierarchical multiscale porous structures that can act as functional scaffolds of Li-S battery cathodes. Benefiting from the above-described advantageous effects, the DNA/SWCNT scaffold allows the resultant Li-S battery to provide significantly improved electrochemical performance.

Original languageEnglish
Pages (from-to)4084-4092
Number of pages9
JournalJournal of Materials Chemistry A
Volume7
Issue number8
DOIs
Publication statusPublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'DNA-directed amphiphilic self-assembly as a chemifunctional/multiscale-structuring strategy for high-performance Li-S batteries'. Together they form a unique fingerprint.

Cite this