Distributed phase sensing using two-mode squeezed states in a truncated SU(1, 1) interferometer

Seongjin Hong, Matthew A. Feldman, Claire E. Marvinney, Michael Febbraro, Alberto M. Marino, Raphael C. Pooser

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We demonstrate distributed phase sensing with a truncated SU(1, 1) interferometer through the measurement of a linear combination of two phases distributed between the two beams of a two-mode squeezed state. We theoretically analyze the sensitivity enhancement with respect to the corresponding classical strategy and experimentally demonstrate a 2 dB quantum noise reduction in the measurement of a linear combination of two phases.

Original languageEnglish
Title of host publicationCLEO
Subtitle of host publicationFundamental Science, CLEO:FS 2023
PublisherOptical Society of America
ISBN (Electronic)9781957171258
DOIs
Publication statusPublished - 2023
EventCLEO: Fundamental Science, CLEO:FS 2023 - Part of Conference on Lasers and Electro-Optics 2023 - San Jose, United States
Duration: 2023 May 72023 May 12

Publication series

NameCLEO: Fundamental Science, CLEO:FS 2023

Conference

ConferenceCLEO: Fundamental Science, CLEO:FS 2023 - Part of Conference on Lasers and Electro-Optics 2023
Country/TerritoryUnited States
CitySan Jose
Period23/5/723/5/12

Bibliographical note

Publisher Copyright:
© Optica Publishing Group 2023, © 2023 The Author(s)

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • General Computer Science
  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Space and Planetary Science
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Distributed phase sensing using two-mode squeezed states in a truncated SU(1, 1) interferometer'. Together they form a unique fingerprint.

Cite this