TY - JOUR
T1 - Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics
AU - Shin, Jihye
AU - Kim, Hye Jung
AU - Kim, Gamin
AU - Song, Meiying
AU - Woo, Se Joon
AU - Lee, Seung Taek
AU - Kim, Hoguen
AU - Lee, Cheolju
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/11/7
Y1 - 2014/11/7
N2 - To discover serological colorectal cancer (CRC) markers, we analyzed cell line secretome to gather proteins of higher potential to be secreted from tissues into circulation. A total of 898 human proteins were identified, of which 62.2% were predicted to be released or shed from cells. The identified proteins were compared with tissue proteomes to find candidate proteins whose expressions were elevated in tumor tissues compared with normal tissues as revealed by (i) quantitative proteomic analysis based on cICAT and mTRAQ or (ii) data mining of immunohistochemical images piled in Human Protein Atlas database. By applying various stringent criteria, 11 candidate proteins were selected. Among these, we validated an significant increase (p = 0.0018) of melanotransferrin (TRFM) at the plasma level of CRC patients through Western blotting, using 130 plasma samples containing 30 healthy controls, 80 CRC patients, and 20 patients of other diseases. Finally, we measured the expression level of TRFM in 325 plasma samples containing 77 healthy controls and 228 CRC patients (34.6 ± 4.2 ng/mL and 67.0 ± 6.4 ng/mL, p < 0.0001) through ELISA and demonstrated the area under the receiver operating characteristic curve of 0.723 (p < 0.0001) with a 92.5% specificity, 48.2% sensitivity, and 95.7% positive predictive value. Furthermore, unlike CEA and PAI-1, up-regulation of TRFM in pathological stages I & II groups compared with stages III & IV groups lead us to expect the use TRFM for early-stage diagnosis of CRC. In this study, we suggest TRFM as a potential serological marker for CRC and expect our discovery strategy to help identify highly cancer-specific and body-fluid-accessible biomarkers.
AB - To discover serological colorectal cancer (CRC) markers, we analyzed cell line secretome to gather proteins of higher potential to be secreted from tissues into circulation. A total of 898 human proteins were identified, of which 62.2% were predicted to be released or shed from cells. The identified proteins were compared with tissue proteomes to find candidate proteins whose expressions were elevated in tumor tissues compared with normal tissues as revealed by (i) quantitative proteomic analysis based on cICAT and mTRAQ or (ii) data mining of immunohistochemical images piled in Human Protein Atlas database. By applying various stringent criteria, 11 candidate proteins were selected. Among these, we validated an significant increase (p = 0.0018) of melanotransferrin (TRFM) at the plasma level of CRC patients through Western blotting, using 130 plasma samples containing 30 healthy controls, 80 CRC patients, and 20 patients of other diseases. Finally, we measured the expression level of TRFM in 325 plasma samples containing 77 healthy controls and 228 CRC patients (34.6 ± 4.2 ng/mL and 67.0 ± 6.4 ng/mL, p < 0.0001) through ELISA and demonstrated the area under the receiver operating characteristic curve of 0.723 (p < 0.0001) with a 92.5% specificity, 48.2% sensitivity, and 95.7% positive predictive value. Furthermore, unlike CEA and PAI-1, up-regulation of TRFM in pathological stages I & II groups compared with stages III & IV groups lead us to expect the use TRFM for early-stage diagnosis of CRC. In this study, we suggest TRFM as a potential serological marker for CRC and expect our discovery strategy to help identify highly cancer-specific and body-fluid-accessible biomarkers.
UR - http://www.scopus.com/inward/record.url?scp=84908892144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908892144&partnerID=8YFLogxK
U2 - 10.1021/pr500790f
DO - 10.1021/pr500790f
M3 - Article
C2 - 25216327
AN - SCOPUS:84908892144
SN - 1535-3893
VL - 13
SP - 4919
EP - 4931
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 11
ER -