Abstract
We have systematically investigated the semimetal-to-semiconductor transition of individual single-crystalline Bi nanowires. For this work, we developed a technique to reduce the diameter of Bi nanowires grown by our unique on-film formation of nanowires (OFF-ON) method. Cooling down the substrate temperature during Bi film deposition by use of liquid nitrogen, film structures with small-sized grains were obtained. Through thermal annealing of these fine-granular Bi films, single-crystalline Bi nanowires can be produced with minimum diameter of ∼20 nm. Elaborative nanofabrication techniques were employed to shape state-of-the-art four-probe devices based on the individual small diameter Bi nanowires. Diameter-dependent transport measurements on the individual Bi nanowires revealed that the semimetal-to-semiconductor transition really occurred at about dw = 63 nm. Moreover, band structure calculations supported this occurrence of the semimetal-to-semiconductor transition.
Original language | English |
---|---|
Article number | 405701 |
Journal | Nanotechnology |
Volume | 21 |
Issue number | 40 |
DOIs | |
Publication status | Published - 2010 Oct 8 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering