Abstract
Substitutional atomic doping is one of the most convenient and precise routes to modulate semiconducting material properties. Although two-dimensional (2D) layered transition metal dichalcogenides (TMDs) are of great interest as a prominent semiconducting material due to their unique physical/chemical properties, such a practical atomic doping is still rare, possibly due to the intrinsic localization nature of conduction paths based on d-band states. Here, using single-crystalline Cl-doped SnSe2, the dimensional crossover in carrier transport accompanied by semiconductor-to-metal transition is reported. Nondoped SnSe2 shows semiconducting transport behavior dominated by 2D variable range hopping conduction, exhibiting relatively strong localization of carriers at low-temperature regions. Moderately electron-doped SnSe2 by substitution on Se with higher valent Cl exhibits superior electrical conductivity even than the heavily doped one owing to the higher electron mobility of the former (167 cm2 V−1 s−1 at 2 K). Combined with Raman spectra, temperature dependence of mobility clearly evidences the effective screening of homopolar optical mode phonon compared to typical TMD materials. Detailed characterizations with magnetoresistance behaviors finally demonstrate that the suppression of both homopolar optical mode phonon and carrier localization as retaining low-dimensionality is key for high mobility conduction in electron-doped SnSe2.
Original language | English |
---|---|
Article number | 1700563 |
Journal | Advanced Electronic Materials |
Volume | 4 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2018 Apr |
Bibliographical note
Funding Information:S.L. and Y.T.L. contributed equally to this work. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03933785) and under the framework of international cooperation program managed by the National Research Foundation of Korea (NRF-2017K2A9A2A08000214, FY2017). K.L. acknowledges the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2015M3D1A1070639). D.K.H. acknowledges the National Research Foundation of Korea (NRF) (Grant No. 2017R1A2B2005640). S.L. and D.K.H. would like to appreciate for the financial support from KIST Institution Program (program No. 2E27150 and 2E28180).
Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials