Abstract
Prostaglandins, which are cyclooxygenase (COX) products, are pathologically up-regulated, and have been proven to be closely associated with neuronal death. In this study, we investigated a role of COX isoforms (COX-1 and COX-2) in kainic acid-induced neuronal death in cultured murine cortical or hippocampal neurons. In primary cortical neurons, both indomethacin (COX-1/-2 nonselective inhibitor) and aspirin (COX-1 preferential inhibitor) reduced basal and kainic acid-induced PGE2 production significantly and prevented neuronal cell death after kainic acid treatment. In contrast, NS398 (COX-2 selective inhibitor) had no effect on kainic acid-induced neuronal cell death. In hippocampal neurons, however, COX-2 inhibitors prevented both kainic acid-induced neuronal death and PGE2 production. COX-2 expression was remarkably up-regulated by kainic acid in hippocampal neurons; whereas in cortical neurons, COX-2 expression was comparatively less significant. Astrocytes were unresponsive to kainic acid in terms of PGE2 production and cell death. In conclusion, we suggest that the release of PGE2 induced by kainic acid occurred through COX-1 activity rather than COX-2 in cortical neurons. The inhibition of PGE2 release by COX-1 inhibitors prevented kainic acid-induced cortical neuronal death, while in the hippocampal neurons, COX-2 inhibitors prevented kainic acid-induced PGE2 release and hippocampal neuronal death.
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Brain Research |
Volume | 908 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2001 Jul 10 |
Bibliographical note
Funding Information:This study was supported by KOSEF 1999-01-205-004-3 and KOSEF 2000-G-0102.
All Science Journal Classification (ASJC) codes
- Neuroscience(all)
- Molecular Biology
- Clinical Neurology
- Developmental Biology