Differential cell death induced by salsolinol with and without copper: Possible role of reactive oxygen species

Hyun Jung Kim, Yunjo Soh, Jung Hee Jang, Jeong Sang Lee, Young J. Oh, Young Joon Surh

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)


Salsolinol (SAL), a novel dopaminergic catechol tetrahydroisoquinoline neurotoxin, has been speculated to contribute to the etiology of Parkinson's disease and neuropathology of chronic alcoholism. Our previous studies have demonstrated that SAL induces strand scission in øX174 supercoiled DNA and oxidative base modification in calf thymus DNA in the presence of cupric ion. We now report that treatment of rat pheochromocytoma (PC12) cells with SAL causes reduced viability, which was exacerbated by Cu2+. The copper chelator bathocuproinedisulfonic acid ameliorated cytotoxicity induced by SAL and Cu2+. N-Acetyl-L-cysteine and reduced glutathione protected against SAL- plus Cu2+-mediated PC12 cell death. Cells exposed to SAL underwent apoptosis, as revealed by characteristic morphological and biochemical changes. SAL treatment resulted in increased levels of Bax with a concomitant decrease in expression of Bcl-xL. Furthermore, SAL rapidly activated c-Jun N-terminal kinase, whereas the activity of extracellular signal-regulated protein kinase remained unchanged. Transfection with Bcl-xL or Bcl-2 led to protection against SAL-mediated PC12 cell death. Although SAL alone could cause apoptotic death in PC12 cells, cells treated with SAL together with Cu2+ became necrotic. Cells exposed to both SAL and Cu2+ exhibited higher levels of intracellular reactive oxygen species, malondialdehyde, and 8-oxo-7,8-dihydro-2′-deoxyguanosine than did those treated with SAL alone. These results suggest that copper accelerates redox cycling of SAL, leading to massive production of reactive oxygen species, which can divert the SAL-induced cell death to necrosis.

Original languageEnglish
Pages (from-to)440-449
Number of pages10
JournalMolecular pharmacology
Issue number3
Publication statusPublished - 2001

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology


Dive into the research topics of 'Differential cell death induced by salsolinol with and without copper: Possible role of reactive oxygen species'. Together they form a unique fingerprint.

Cite this