Abstract
Immunodeficient mice are widely used for pre-clinical studies to understand various human diseases. Here, we report the generation of four immunodeficient mouse models using CRISPR/Cas9 system without inserting any foreign gene sequences such as NeoR cassettes and their characterization. By eliminating any possible effects of adding a NeoR cassette, our mouse models may allow us to better elucidate the in vivo functions of each gene. Our FVB-Rag2−/−, B6-Rag2−/−, and BALB/c-Prkdc−/− mice showed phenotypes similar to those of the earlier immunodeficient mouse models, including a lack of mature B cells and T cells and an increase in the number of CD45+DX-5+ natural killer cells. However, B6-Il2rg−/− mice had a unique phenotype, with a lack of mature B cells, increased number of T cells, and decreased number of natural killer cells. Additionally, serum immunoglobulin levels in all four immunodeficient mouse models were significantly reduced when compared to those in wild-type mice with the exception of IgM in B6-Il2rg−/− mice. These results indicate that our immunodeficient mouse models are a robust tool for in vivo studies of the immune system and will provide new insights into the variation in phenotypic outcomes resulting from different gene-targeting methodologies.
Original language | English |
---|---|
Pages (from-to) | 241-251 |
Number of pages | 11 |
Journal | Transgenic Research |
Volume | 27 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2018 Jun 1 |
Bibliographical note
Publisher Copyright:© 2018, The Author(s).
All Science Journal Classification (ASJC) codes
- Biotechnology
- Animal Science and Zoology
- Genetics
- Agronomy and Crop Science