Abstract
In this study, n-octadecane/porous nano carbon-based materials (OPNCs) were thermally enhanced using a 3-step filtered vacuum impregnation method. n-octadecane as phase change materials (PCMs) and supporting materials of C-300, C-500, Activated carbon (AC), Expanded graphite (EG) and Exfoliated graphite nanoplatelets (xGnP) made of the same raw material. Through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis, n-octadecane was well impregnated in carbon-based materials not a chemical bonding. Thermal conductivities of OPNCs were increased up to 580% compared with n-octadecane by TCi. Dfferential scanning calorimetry (DSC) analysis was used to verify thermal performance of OPNCs, the latent heat capacities of OPNCs were measured from 220J/g to 393J/g. Analysis of thermal stability by thermogravimetric analysis (TGA) showed that the impregnation ratio of OPNCs was about 56% and that of EG was 88.53%. 3-step filtered vacuum impregnation method manufactured a stable and thermally enhanced OPNCs.
Original language | English |
---|---|
Pages (from-to) | 194-201 |
Number of pages | 8 |
Journal | Thermochimica Acta |
Volume | 655 |
DOIs | |
Publication status | Published - 2017 Sept 10 |
Bibliographical note
Publisher Copyright:© 2017 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Instrumentation
- Condensed Matter Physics
- Physical and Theoretical Chemistry