TY - JOUR
T1 - Development of rapid assessment method to determine bacterial viability based on ultraviolet and visible (UV-Vis) spectroscopy analysis including application to bioaerosols
AU - Park, Chul Woo
AU - Yoon, Ki Young
AU - Byeon, Jeong Hoon
AU - Kim, Kyoungsik
AU - Hwang, Jungho
PY - 2012/6
Y1 - 2012/6
N2 - We evaluated a method for the assessment of bacterial viability that is based on ultraviolet and visible (UV-Vis) spectroscopy analysis. The quantities of intracellular materials inside a cell vary depending on change of bacterial viability by disruption of the membrane integrity. Therefore, normalized optical density in the range of 200-290 nm was analyzed to determine if it varied in samples containing different proportions of live bacteria. Our results indicate that samples containing higher proportions of live bacteria such as Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis had higher optical densities. In addition, the optical density at 230 nm divided by the optical density at 670 nm was found to have a strong linear correlation with bacterial viability (the R 2 values of E. coli, B. subtilis, and S. epidermidis are 0.9964, 0.9118, and 0.9861, respectively). Our proposed rapid assessment method takes less than three minutes and only requires optical measurements at 230 and 670 nm; therefore, it is simpler and faster than colony counting, fluorochromasia, or the dyeexclusion test. Moreover, our method was applied to bioaerosols, which are currently important issues in public health, microbiology, aerosol science, and other fields. In our study, the bacteria (E. coli) were dispersed into the air using a Collisontype atomizer, and were sampled in sterilized deionized water using an impinger with a pump. According to our method, the viability of E. coli was approximately 55.2%, which was similar to 52.5 ± 4.7% determined from the LIVE/DEAD BacLight bacterial viability assay.
AB - We evaluated a method for the assessment of bacterial viability that is based on ultraviolet and visible (UV-Vis) spectroscopy analysis. The quantities of intracellular materials inside a cell vary depending on change of bacterial viability by disruption of the membrane integrity. Therefore, normalized optical density in the range of 200-290 nm was analyzed to determine if it varied in samples containing different proportions of live bacteria. Our results indicate that samples containing higher proportions of live bacteria such as Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis had higher optical densities. In addition, the optical density at 230 nm divided by the optical density at 670 nm was found to have a strong linear correlation with bacterial viability (the R 2 values of E. coli, B. subtilis, and S. epidermidis are 0.9964, 0.9118, and 0.9861, respectively). Our proposed rapid assessment method takes less than three minutes and only requires optical measurements at 230 and 670 nm; therefore, it is simpler and faster than colony counting, fluorochromasia, or the dyeexclusion test. Moreover, our method was applied to bioaerosols, which are currently important issues in public health, microbiology, aerosol science, and other fields. In our study, the bacteria (E. coli) were dispersed into the air using a Collisontype atomizer, and were sampled in sterilized deionized water using an impinger with a pump. According to our method, the viability of E. coli was approximately 55.2%, which was similar to 52.5 ± 4.7% determined from the LIVE/DEAD BacLight bacterial viability assay.
UR - http://www.scopus.com/inward/record.url?scp=84860199399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860199399&partnerID=8YFLogxK
U2 - 10.4209/aaqr.2011.08.0129
DO - 10.4209/aaqr.2011.08.0129
M3 - Article
AN - SCOPUS:84860199399
SN - 1680-8584
VL - 12
SP - 395
EP - 404
JO - Aerosol and Air Quality Research
JF - Aerosol and Air Quality Research
IS - 3
ER -