Development of machine learning models to predict platinum sensitivity of high-grade serous ovarian carcinoma

Suhyun Hwangbo, Se Ik Kim, Ju Hyun Kim, Kyung Jin Eoh, Chanhee Lee, Young Tae Kim, Dae Shik Suh, Taesung Park, Yong Sang Song

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

To support the implementation of individualized disease management, we aimed to develop machine learning models predicting platinum sensitivity in patients with high-grade serous ovarian carcinoma (HGSOC). We reviewed the medical records of 1002 eligible patients. Patients’ clinicopathologic characteristics, surgical findings, details of chemotherapy, treatment response, and survival outcomes were collected. Using the stepwise selection method, based on the area under the receiver operating characteristic curve (AUC) values, six variables associated with platinum sensitivity were selected: age, initial serum CA-125 levels, neoadjuvant chemotherapy, pelvic lymph node status, involvement of pelvic tissue other than the uterus and tubes, and involvement of the small bowel and mesentery. Based on these variables, predictive models were constructed using four machine learning algorithms, logistic regression (LR), random forest, support vector machine, and deep neural network; the model performance was evaluated with the five-fold cross-validation method. The LR-based model performed best at identifying platinum-resistant cases with an AUC of 0.741. Adding the FIGO stage and residual tumor size after debulking surgery did not improve model performance. Based on the six-variable LR model, we also developed a web-based nomogram. The presented models may be useful in clinical practice and research.

Original languageEnglish
Article number1875
JournalCancers
Volume13
Issue number8
DOIs
Publication statusPublished - 2021 Apr 2

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Development of machine learning models to predict platinum sensitivity of high-grade serous ovarian carcinoma'. Together they form a unique fingerprint.

Cite this