Development and performance test of a ZnO nanowire charger for measurements of nano-aerosol particles

Chul Woo Park, Sang Gu Lee, Min Ook Kim, Jongbaeg Kim, Jungho Hwang

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The most efficient and widely used technique for monitoring aerosol particles is essentially an electrical method. For the development of any miniaturized aerosol classifier based on electrical techniques the miniaturized aerosol charger must provide a sufficient and stable charging efficiency. We designed and fabricated a ZnO nanowire charger (4 cm length × 2 cm width × 1 cm height) and then carried out an aerosol particle charging performance test. To test the electrical characteristics of this charger, corona currents were measured according to various applied voltages to determine the maximum stable ion number concentration. The average particle charge and wall loss of the charger were evaluated with monodispersed NaCl aerosol particles with diameters of 15-80 nm. The particle charge and wall loss were also obtained utilizing FLUENT (version 6.3), a commercial computational fluid dynamics (CFD) software, with an external user-defined function (UDF) code, by solving equations for the electric field, flow field, and particle trajectories. The measured data for particle loss and particle charge were in good agreement with the results calculated by FLUENT.

Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalSensors and Actuators, A: Physical
Volume222
DOIs
Publication statusPublished - 2015 Feb 1

Bibliographical note

Funding Information:
This work was supported by BioNano Health-Guard Research Center funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as Global Frontier Project (Grant Number H-GUARD_2013M3A6B2078959 ).

Publisher Copyright:
© 2014 Elsevier B.V. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Development and performance test of a ZnO nanowire charger for measurements of nano-aerosol particles'. Together they form a unique fingerprint.

Cite this