Abstract
Multimedia system-on-a-chip (SoC) platform designs nowadays are facing some conflicting issues regarding product development. One is induced by increasing design complexity and another is induced by decreasing time-to-market. Hence, designers are seeking a more efficient and reliable methodology in order to design complex multi-million gate SoC under such harsh conditions. In particular, the complexity of a generic pin control block in multimedia SoC which implements input/output (I/O) paths for off-chip communication has increased exponentially in recent years. Accordingly, the possibility of introducing human errors in designing such block has grown. Operation of generic-pin control block needs to be validated with a top-level RTL from the early stages of design, which correctly checks full-chip interface. However, generic-pin control block has inherent several design issues since function registers and multi-I/O paths are usually fixed in the relatively late stages of design. Also, the role of a generic pin control block that shares limited pins causes frequent changes in pin assignment. Therefore, current design approaches of a generic pin control block are no longer adequate to meet the challenges of design productivity, design reusability, and shorter time-to-market for design. And, this results in many possible human errors when using a traditional RTL description. As a response to this problem, this paper presents a design automation based approach to reduce the possibility of human errors. In the case study presented, we succeeded in auto-generating a generic pin control block in multimedia SoC platforms which has more than 300 general purpose I/O interfaces including both input and output, as well as 900 PAD pins. Ultimately, we reduced the amount of manual description for generating a generic pin control block by a whopping 97 %.
Original language | English |
---|---|
Pages (from-to) | 9055-9066 |
Number of pages | 12 |
Journal | Multimedia Tools and Applications |
Volume | 74 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2015 Oct 22 |
Bibliographical note
Publisher Copyright:© 2013, Springer Science+Business Media New York.
All Science Journal Classification (ASJC) codes
- Software
- Media Technology
- Hardware and Architecture
- Computer Networks and Communications