Design of active Pt on TiO2 based nanofibrous cathode for superior PEMFC performance and durability at high temperature

Yunseong Ji, Yong il Cho, Yukwon Jeon, Chanmin Lee, Daehwan Park, Yong Gun Shul

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


Oxygen reduction reaction (ORR) activity and stability of the cathode catalyst are important issues for practical applications, which should be even considered for the materials in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). To improve these properties, modification of the catalyst electronic structure and finding durable supports can be a good approach. In this study, we synthesized a noble nanofibrous composite electrode which consist of carbon nanotube (CNT)-winded Pt/TiO2 nanofiber (CNT-Pt/TiO2). Our approach takes advantages of the electrochemical conductivity of CNF as well as better stability from the corrosion resistivity of TiO2 and strong metal-support interaction (SMSI) between the Pt nanoparticles and TiO2 nanofibers for less Pt dissolution. We also found that the Pt electronic state can be changed by an interaction with neighbouring CNT and TiO2, resulting a decrease of Pt d-band vacancy for enhanced catalytic activity. Furthermore, nanofibrous structure with a unique 3D pore structure provides higher surface area for additional improvements of the mass transfer. These results reveal that the CNT-Pt/TiO2 nanofiber based electrode shows enhanced performance with the maximum power density of 567 mW cm−2 compare to commercial Pt/C (461 mW cm−2) with a significant durability at harsh conditions of 120 °C and RH 40%.

Original languageEnglish
Pages (from-to)421-429
Number of pages9
JournalApplied Catalysis B: Environmental
Publication statusPublished - 2017 May 5

Bibliographical note

Publisher Copyright:
© 2016 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Environmental Science
  • Process Chemistry and Technology


Dive into the research topics of 'Design of active Pt on TiO2 based nanofibrous cathode for superior PEMFC performance and durability at high temperature'. Together they form a unique fingerprint.

Cite this