Abstract
Recent works on machine learning have greatly advanced the accuracy of depth estimation from a single image. However, resulting depth images are still visually unsatisfactory, often producing poor boundary localization and spurious regions. In this paper, we formulate this problem from single images as a deep adversarial learning framework. A two-stage convolutional network is designed as a generator to sequentially predict global and local structures of the depth image. At the heart of our approach is a training criterion based on adversarial discriminator which attempts to distinguish between real and generated depth images as accurately as possible. Our model enables more realistic and structure-preserving depth prediction from a single image, compared to state-of-the-arts approaches. An experimental comparison demonstrates the effectiveness of our approach on large RGB-D dataset.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Conference on Image Processing, ICIP 2017 - Proceedings |
Publisher | IEEE Computer Society |
Pages | 1717-1721 |
Number of pages | 5 |
ISBN (Electronic) | 9781509021758 |
DOIs | |
Publication status | Published - 2018 Feb 20 |
Event | 24th IEEE International Conference on Image Processing, ICIP 2017 - Beijing, China Duration: 2017 Sept 17 → 2017 Sept 20 |
Publication series
Name | Proceedings - International Conference on Image Processing, ICIP |
---|---|
Volume | 2017-September |
ISSN (Print) | 1522-4880 |
Other
Other | 24th IEEE International Conference on Image Processing, ICIP 2017 |
---|---|
Country/Territory | China |
City | Beijing |
Period | 17/9/17 → 17/9/20 |
Bibliographical note
Funding Information:This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R0115-16-1007, High quality 2d-to-multiview contents generation from large-scale RGB+D database).
Publisher Copyright:
© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition
- Signal Processing