Dendritic PEG outer shells enhance serum stability of polymeric micelles

Hao jui Hsu, Yanxiao Han, Michael Cheong, Petr Král, Seungpyo Hong

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

A higher surface density of poly(ethylene glycol) (PEG) on polymeric micelles enhances their stability in serum, leading to improved plasma circulation. To obtain fundamental, mechanistic understanding of the PEG effect associated with polymeric architecture/configuration, we have synthesized PEGylated dendron-based copolymers (PDCs) and linear block copolymers (LBCs) with similar molecular weights. These copolymers formed dendron (hyperbranched) and linear micelles, respectively, which were compared in terms of their stabilities in serum, micelle-serum protein interactions, and in vivo biodistributions. Overall, the dendron micelles exhibited a better serum stability (longer half-life) and thus a slower release profile than the linear micelles. Fluorescence quenching assays and molecular dynamics (MD) simulations revealed that the high serum stability of the dendron micelles can be attributed to reduced micelle-serum protein interactions, owing to their dendritic, dense PEG outer shell. These results provide an important design cue for various polymeric micelles and nanoparticles.

Original languageEnglish
Pages (from-to)1879-1889
Number of pages11
JournalNanomedicine: Nanotechnology, Biology, and Medicine
Volume14
Issue number6
DOIs
Publication statusPublished - 2018 Aug

Bibliographical note

Publisher Copyright:
© 2018 Elsevier Inc.

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biomedical Engineering
  • Materials Science(all)
  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Dendritic PEG outer shells enhance serum stability of polymeric micelles'. Together they form a unique fingerprint.

Cite this