Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H2 Generation

Kan Zhang, Jung Kyu Kim, Ming Ma, Sang Youp Yim, Chang Lyoul Lee, Hyunjung Shin, Jong Hyeok Park

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)


Photocatalytic hydrogen (H2) evolution requires efficient electron transfer to catalytically active sites in competition with charge recombination. Thus, controlling charge-carrier dynamics in the photocatalytic H2 evolution process is essential for optimized photocatalyst nanostructures. Here, the efficient delocalization of electrons is demonstrated in a heterostructure consisting of optimized MoS2 tips and CdS nanorods (M-t-CdS Nrs) synthesized by amine-assisted oriented attachment. The heterostructure achieves photocatalytic H2 activity of 8.44 mmol h−1 g−1 with excellent long-term durability (>23 h) without additional passivation under simulated solar light (AM 1.5, 100 mW cm−2). This activity is nearly two orders of magnitude higher than that of pure CdS Nrs. The impressive photocatalytic H2 activity of M-t-CdS Nrs reflects favorable charge-carrier dynamics, as determined by steady-state PL and time-correlated single photon counting correlation analysis at low temperature. The MoS2 cocatalysts precisely located at the end of the CdS Nrs exhibit ultrafast charge transfer and slow charge recombination via spatially localized deeper energy states, resulting in a highly efficient H2 evolution reaction in lactic acid containing an electrolyte.

Original languageEnglish
Pages (from-to)4527-4534
Number of pages8
JournalAdvanced Functional Materials
Issue number25
Publication statusPublished - 2016 Jul 5

Bibliographical note

Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • General Chemistry
  • General Materials Science
  • Electrochemistry
  • Biomaterials


Dive into the research topics of 'Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H2 Generation'. Together they form a unique fingerprint.

Cite this