Abstract
Video super-resolution (VSR) has become even more important recently to provide high resolution (HR) contents for ultra high definition displays. While many deep learning based VSR methods have been proposed, most of them rely heavily on the accuracy of motion estimation and compensation. We introduce a fundamentally different framework for VSR in this paper. We propose a novel end-to-end deep neural network that generates dynamic upsampling filters and a residual image, which are computed depending on the local spatio-temporal neighborhood of each pixel to avoid explicit motion compensation. With our approach, an HR image is reconstructed directly from the input image using the dynamic upsampling filters, and the fine details are added through the computed residual. Our network with the help of a new data augmentation technique can generate much sharper HR videos with temporal consistency, compared with the previous methods. We also provide analysis of our network through extensive experiments to show how the network deals with motions implicitly.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
Publisher | IEEE Computer Society |
Pages | 3224-3232 |
Number of pages | 9 |
ISBN (Electronic) | 9781538664209 |
DOIs | |
Publication status | Published - 2018 Dec 14 |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States Duration: 2018 Jun 18 → 2018 Jun 22 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 18/6/18 → 18/6/22 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4014610)
Publisher Copyright:
© 2018 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition