Abstract
Video super-resolution (VSR) and frame interpolation (FI) are traditional computer vision problems, and the performance have been improving by incorporating deep learning recently. In this paper, we investigate the problem of jointly upsampling videos both in space and time, which is becoming more important with advances in display systems. One solution for this is to run VSR and FI, one by one, independently. This is highly inefficient as heavy deep neural networks (DNN) are involved in each solution. To this end, we propose an end-to-end DNN framework for the space-time video upsampling by efficiently merging VSR and FI into a joint framework. In our framework, a novel weighting scheme is proposed to fuse all input frames effectively without explicit motion compensation for efficient processing of videos. The results show better results both quantitatively and qualitatively, while reducing the computation time (× 7 faster) and the number of parameters (30%) compared to baselines. Our source code is available at https://github.com/JaeYeonKang/STVUN-Pytorch.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings |
Editors | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 701-717 |
Number of pages | 17 |
ISBN (Print) | 9783030586065 |
DOIs | |
Publication status | Published - 2020 |
Event | 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: 2020 Aug 23 → 2020 Aug 28 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12355 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 20/8/23 → 20/8/28 |
Bibliographical note
Funding Information:Acknowledgements. This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2014-0-00059, Development of Predictive Visual Intelligence Technology).
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)