Abstract
In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and mouths), the semantic information of a face provides a strong prior for restoration. As such, we propose to incorporate global semantic priors as input and impose local structure losses to regularize the output within a multi-scale deep CNN. We train the network with perceptual and adversarial losses to generate photo-realistic results and develop an incremental training strategy to handle random blur kernels in the wild. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm restores sharp images with more facial details and performs favorably against state-of-the-art methods in terms of restoration quality, face recognition and execution speed.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
Publisher | IEEE Computer Society |
Pages | 8260-8269 |
Number of pages | 10 |
ISBN (Electronic) | 9781538664209 |
DOIs | |
Publication status | Published - 2018 Dec 14 |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States Duration: 2018 Jun 18 → 2018 Jun 22 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 18/6/18 → 18/6/22 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition