Abstract
Regression trackers directly learn a mapping from regularly dense samples of target objects to soft labels, which are usually generated by a Gaussian function, to estimate target positions. Due to the potential for fast-tracking and easy implementation, regression trackers have recently received increasing attention. However, state-of-the-art deep regression trackers do not perform as well as discriminative correlation filters (DCFs) trackers. We identify the main bottleneck of training regression networks as extreme foreground-background data imbalance. To balance training data, we propose a novel shrinkage loss to penalize the importance of easy training data. Additionally, we apply residual connections to fuse multiple convolutional layers as well as their output response maps. Without bells and whistles, the proposed deep regression tracking method performs favorably against state-of-the-art trackers, especially in comparison with DCFs trackers, on five benchmark datasets including OTB-2013, OTB-2015, Temple-128, UAV-123 and VOT-2016.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings |
Editors | Vittorio Ferrari, Cristian Sminchisescu, Yair Weiss, Martial Hebert |
Publisher | Springer Verlag |
Pages | 369-386 |
Number of pages | 18 |
ISBN (Print) | 9783030012632 |
DOIs | |
Publication status | Published - 2018 |
Event | 15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany Duration: 2018 Sept 8 → 2018 Sept 14 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11218 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 15th European Conference on Computer Vision, ECCV 2018 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 18/9/8 → 18/9/14 |
Bibliographical note
Publisher Copyright:© 2018, Springer Nature Switzerland AG.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)