Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography

Sunghee Jung, Soochahn Lee, Byunghwan Jeon, Yeonggul Jang, Hyuk Jae Chang

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Motion artifacts may occur in coronary computed tomography angiography (CCTA) due to the heartbeat and impede the clinician's diagnosis of coronary arterial diseases. Thus, motion artifact correction of the coronary artery is required to quantify the risk of disease more accurately. We present a novel method based on deep learning for motion artifact correction in CCTA. Because the image of the coronary artery without motion (the ground-truth data required in supervised deep learning) is medically unattainable, we apply a style transfer method to 2D image patches cropped from full-phase 4D computed tomography (CT) to synthesize these images. We then train a convolutional neural network (CNN) for motion artifact correction using this synthetic ground-truth (SynGT). During testing, the output motion-corrected 2D image patches of the trained network are reinserted into the 3D CT volume with volumetric interpolation. The proposed method is evaluated using both phantom and clinical data. A phantom study demonstrates comparable results to other methods in quantitative performance and outperforms those methods in computation time. For clinical data, a quantitative analysis based on metric measurements is presented that confirms the correction of motion artifacts. Moreover, an observer study finds that by applying the proposed method, motion artifacts are markedly reduced, and boundaries of the coronary artery are much sharper, with a strong inter-observer agreement (κ = 0.78). Finally, evaluations using commercial software on the original and resulting CT volumes of the proposed method reveal a considerable increase in tracked coronary artery length.

Original languageEnglish
Article number9082676
Pages (from-to)81849-81863
Number of pages15
JournalIEEE Access
Publication statusPublished - 2020

Bibliographical note

Funding Information:
This work was supported in part by the Institute for Information and Communications Technology Promotion (IITP) (Intelligent SW Technology Development for Medical Data Analysis and Autonomous Digital Companion Framework and Application) under Grant 2018-0-00861 and Grant 2017-0-00255, in part by the National Research Foundation of Korea (NRF) under Grant NRF-2019R1F1A1063656, and in part by the Korean Government (Ministry of Science and ICT (MSIT) and Ministry of Education (MOE)).

Publisher Copyright:
© 2013 IEEE.

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)


Dive into the research topics of 'Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography'. Together they form a unique fingerprint.

Cite this