Abstract
Compositing is one of the most common operations in photo editing. To generate realistic composites, the appearances of foreground and background need to be adjusted to make them compatible. Previous approaches to harmonize composites have focused on learning statistical relationships between hand-crafted appearance features of the foreground and background, which is unreliable especially when the contents in the two layers are vastly different. In this work, we propose an end-to-end deep convolutional neural network for image harmonization, which can capture both the context and semantic information of the composite images during harmonization. We also introduce an efficient way to collect large-scale and high-quality training data that can facilitate the training process. Experiments on the synthesized dataset and real composite images show that the proposed network outperforms previous stateof- the-art methods.
Original language | English |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2799-2807 |
Number of pages | 9 |
ISBN (Electronic) | 9781538604571 |
DOIs | |
Publication status | Published - 2017 Nov 6 |
Event | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States Duration: 2017 Jul 21 → 2017 Jul 26 |
Publication series
Name | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Volume | 2017-January |
Other
Other | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 17/7/21 → 17/7/26 |
Bibliographical note
Publisher Copyright:©2017 IEEE.
All Science Journal Classification (ASJC) codes
- Signal Processing
- Computer Vision and Pattern Recognition